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Product Description 
A smart executive is a crucial component of current control architecture designs for 
autonomous spacecraft.  The executive is responsible for coordinating run-time 
operations including plan execution, reactive recovery from contingencies, and invoking 
external fault recovery mechanisms.  The current state of the art in autonomout 
executives for spacecraft is the Remote Agent Smart Executive [6, 7].  (See also the 
related work section on page 4.) 
We propose to improve the current state of the art in three ways.  First, we will reduce 
the memory footprint by a factor of 3 by using a more compact implementation of the 
core software.  This is very important because the current footprint (>10MB) is a 
significant obstacle to deployment in a flight environment.  Second, we will increase 
runtime efficiency of the system database by at least a factor of 2 by replacing the 
current unification database with an object database.  Finally, we will add new features 
to support the new JPL Mission Data System (MDS) architecture and its associated 
goal-based commanding paradigm. 
This is a continuing task transitioning from push to pull. 

 
Benefits 

This product provides the sequencing and system coordination capabilities for a semi-
autonomous or fully autonomous spacecraft.  It provides two major classes of benefits: 
reduced operations costs and enabling new classes of missions.  Both benefits are vitally 
important in the new climate where missions are expected to do more with less.  Both 
benefits were demonstrated recently on the Remote Agent Experiment on the New 
Millennium Space Technology 1 mission (ST1, formerly DS1) technology demonstration 
mission.  The Remote Agent autonomy software, which includes the Smart Executive as 
one of three major components, controlled the ST1 spacecraft autonomously for over two 
days.  Except for diagnosing a bug in the Remote Agent software (not unexpected since 
this was a technology validation) no operator intervention was needed during that time.  
This demonstration paves the way for a new way of doing business where a thoroughly 
tested industrial-strength version of the Remote Agent or its successor does most of the 
day-to-day operations currently performed by humans. 
Our major customer is a pair of interferometry missions, New Millennium ST3 and the 
Space Interferometry Mission (SIM).  Both of these missions are unprecedented in their 
level of precision, operational complexity, and workload.  ST3 consists of three separate 
spacecraft flying in formation.  SIM is only a single spacecraft, but it must configure 
itself with microradian and micrometer accuracy.  Both missions are working observatory 
missions which must be constantly reconfiguring themselves in response to observation 



requests.  Furthermore, the observation process is an active process, requiring the 
spacecraft to autonomously locate and track interference fringes.  It would be impossible 
to operate these missions using traditional open-loop sequencing. 
The smart executive provides the reactive control component of an autonomous control 
system that enables these missions to be operated reliably with minimal ground 
control staff.  It also increases mission reliability by hiding the underlying control 
details where many programming bugs occur.  In a sense, the smart executive offers 
“structured programming” for reactive autonomous control, including recovery from 
unexpected contingencies, control of parallel processes, and integration with a state 
knowledge database.  In the same way that structured programming offers increased 
productivity and reliability over code written with GOTO statements, the smart executive 
offers the same benefits over code written using direct access to operating system 
primitives. 

Technical Approach 
The problem 
The central idea behind the smart executive is to capture complex control idioms inside a 
higher-level API.  For example, consider a critical section where a read-modify-write 
operation must be performed without interrupts.  If the underlying operating system 
provides only primitive operations to turn interrupts on and off one might at first be 
tempted to write the code in the following way (using C/Java syntax for illustration): 

void critical_operation_1 () {
turn_off_interrrupts();
do_critical_operations();
turn_on_interrupts();

}

But this code is flawed.  If critical_operation_1 is called from within another critical 
section then interrupts will be turned back on prematurely.  For example: 

void critical_operation_2 () {
turn_off_interrrupts();
...
critical_operation_1();
// Interrupts are back on here, but they should not be
...
turn_on_interrupts();

}

  
The fix for this bug is to keep track of whether interrupts are on or not on entry to a 
critical section and restore the appropriate state on exit, e.g.: 

boolean interrupt_status = true; // Interrupts are on
void critical_operation_1 () {

boolean original_interrupt_status = interrupt_status;
if (interrupt_status) {

turn_off_interrupts();
interupt_status = false;

}
do_critical_operations();
if (original_interrupt_status)

turn_on_interrupts();
}
interrupt_status = original_interrupt_status;

}



This is now a fairly complicated piece of code to do a conceptually simple thing, and the 
situation gets rapidly worse.  The critical-section idiom gets much more complicated in 
cases where exceptions and other unexpected contingencies can arise, requiring non-local 
transfers of control.  Furthermore, this idiom and others like it are very common in 
autonomous control code, and all these idioms can interact with each other in 
complicated ways.  It is easy to make mistakes in the application of these idioms because 
they are so complicated and non-intuitive.  And such mistakes usually manifest 
themselves as intermittent catastrophic failures (e.g. a system crash) potentially resulting 
in loss of spacecraft.  Because they are intermittent they are extremely difficult to debug.  
They are sensitive to subtle timing variations.  A bug of this sort might not manifest itself 
at all on a ground testbed.  Such a bug did in fact show up during the Remote Agent 
experiment.  It never manifested itself during many thousands of hours of ground testing, 
but it did show up in less than 48 hours in flight, causing the RA to hang. 
Our solution 
We solve this problem by packaging the critical section idiom and others like it inside 
new control constructs.  Instead of having to write the complicated code above, the user 
of the smart executive need only write: 

void critical_operation_1 () {
CRITICAL_SECTION {

do_critical_operations();
}

}

The smart executive provides similar constructs for handling unexpected contingencies 
(WITH_RECOVERY_PROCEDURES), managing parallel tasks (TASK_NET, AND_PARALLEL,

OR_PARALLEL, WITH-GUARDIAN), implementing goal-directed behavior (TO_ACHIEVE,
ACHIEVE) and integrating with a state knowledge database (WITH_MAINTAINED-
_PROPERTIES).  All of these constructs are integrated into a unified execution model that 
makes them interact with one another in intuitive ways.  The underlying complexity is 
hidden from the user who is thus freed from the burden of insuring that all of the idioms 
are correct wherever they are used. 
The current implementation of the smart executive has been statically analyzed using the 
formal analysis tool SPIN [4].  Several bugs were found and corrected, and no new bugs 
have been reported since.  (The Remote Agent bug was due to a manually applied idiom 
for a feature not supported by the smart executive at the time.) 
Most languages cannot be extended except by modifying their compilers.  This is a 
difficult and expensive task, and results in a system that does not conform to the original 
language standard.  The notable exception this rule is Lisp, which provides integrated 
features for extending the language entirely within the language standard.  Implementing 
language extensions like CRITICAL_SECTION in Lisp is therefore much easier than in any 
other language.  The prototype smart executive (and indeed the entire Remote Agent) was 
therefore implemented in Common Lisp [10]. 
However, Lisp presents certain challenges for production deployment.  It is not as 
popular a language as C++ and is therefore not as well supported by industry, particularly 
in the flight environment.  Furthermore, there is a perception of customer resistance to the 
use of Lisp (though in our experience the fear of customer resistance has been far more 
severe than any actual resistance we have found).  We therefore proposed at the 
beginning of last year to attempt a port of the smart executive to C or C++.  However, the 



reviewer’s response to this plan was so overwhelmingly negative that we decided to 
tackle the problem of producing an industrial-strength Lisp-based version instead.  To do 
this we acquired a source license for Macintosh Common Lisp (MCL) and ported it to the 
flight operating system (vxWorks).  MCL is uniquely suited to flight deployment because 
it is very small (less than 3 MB).  It is also a very mature product, with a heritage 
extending back to 1988.  (MCL was a commercial product before C++ even existed.) 
Because it is inevitable that significant portions of flight software will be written in C or 
C++ (and possibly Java) we are paying particular attention to interoperability issues.  Our 
goal is to produce a product where the fact that there is an underlying Lisp 
implementation can be completely transparent to the user.  We are integrating the Lisp 
thread scheduler with the native OS scheduler, developing CORBA interfaces, and 
insuring that there is an adequate foreign function interface. 
Related work 
Firby introduced the idea of new control constructs for reactive control in a language 
called RAPS [1].  In fact, RAPS was used in an early prototype of the Remote Agent, but 
turned out to be too cumbersome and inefficient.  Simmons embedded a reactive control 
capability within an interprocess communications model implemented as a C library [8].  
This system, called TCA, was also evaluated during early design stages of the Remote 
Agent.  Simmons has since extended TCA to include a language called TDL [9] which is 
an extension to C++.  A similar system called RL was developed by Lyons for industrial 
process control [5].  The Smart Executive is unique in having been integrated into a 
comprehensive system specifically tailored for controlling spacecraft, and in having been 
tested on an actual spacecraft. 

Status and Milestones 
We are currently ahead of schedule, and we have been able to expand the scope of the 
project somewhat.  In addition to our original plan of porting MCL to vxWorks we also 
did a port to the Sparc architecture, so the resulting product will run on Solaris machines 
as well as in the flight environment.  This will provide useful flexibility for projects who 
do initial development in Solaris.  For other architectures the Smart Executive will run in 
all major commercial implementations of Common Lisp.  There is at least one 
commercial implementation available for virtually every platform in common use. 
FY 1999 Milestones: 
• = Port MCL to the flight environment (PPC/vxWorks).  Completed. 
• = Demonstrate the prototype smart executive running in the MCL port.  Completed. 
• = Port MCL to the Sparc/Solaris architecture.  This is a task extension, currently in 

beta-test. 
• = Integrate the MCL thread scheduler with the underlying OS scheduler.  Originally 

planned for next year.  Currently in alpha test. 
FY 2000 Milestones: 
• = Complete implementation and integration of object database 
• = Initial design and implementation of goal-based commanding constructs 
• = Finish debugging, begin documentation 
FY 2001 Milestones: 
• = Finallize design and implementation of goal-based commanding constructs 
• = Demonstrate product in a realistic end-to-end mission scenario 



Customer Relevance 
The Smart Executive, along with other components of the Remote Agent, are currently 
baseline for ST3 and under consideration for SIM.  Furthermore, many of the 
technologies in the Smart Executive are informing the design of the MDS control 
architecture.  MDS is also relying on the MCL port as a backup for meeting several 
requirements for which their baseline plan is uncertain.  In particular, dynamic code 
updates and certain algorithms requiring dynamic memory management are very 
problematic in C++, and it is not yet clear whether other alternatives will be a viable for 
flight. 

Personnel 
Dr. Erann Gat is the designer of ESL, the core of the Remote Agent Smart Executive, 
which is the current state of the art in autonomous spacecraft control.  He has over twelve 
years of experience in the design and implentation of autonomous control architectures 
for mobile robots and spacecraft. 
Dr. Marcel Schoppers is the originator of Universal Plans, a technology for compiling 
very large plans into very compact representations (in 1995 a plan encompassing 1055 
states was compiled into 2000 lines of C code).  He has over fifteen years of experience 
in autonomous control architectures and executives. 
Mr. Gary Byers is the author of significant portions of Macintosh Common Lisp, 
including the compiler.  He is one of the world’s leading experts on advanced compiler 
technologies. 
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The Remote Agent is the only implementation we know of of a number of technologies 
that are needed by JPL's interferometry missions, including the Space Interferometry 
Mission, the Space Technology 3 separated-spacecraft interferometer, and the Keck 
Interferometer. 
Among these technologies are the ability to implement any of a number of levels of 
autonomy, from traditional schedule-based sequencing, through full autonomous 
planning and sequencing capability.  This provides for a natural growth path during the 
development of our projects. 
Interferometers have special sequencing needs relative to traditional spacecraft, in that 
interferometer subsystems are highly coupled and have more dependency on each other 
than is traditional.  In a traditional spacecraft, a failed magnetometer does not affect the 
performance of the imaging camera.  In an interferometer, however, the simultaneous 
operation of all subsystems is a requirement for basic instrument operation. Nonetheless, 
the autonomy requirement for a mission like SIM is rather severe - only one downlink is 
available every four days, so it is not practical to safe the spacecraft, for example, when a 
interferometer subsystem fails to operate as expected. 
This kind of property severely taxes the ability of traditional sequencing technologies to 
operate these instruments.  A sequencing technology that can react in real-time to 
anomalous behavior is important.  For example, "star tracker 1 has lost lock, so I will 
temporarily suspend fringe tracking until the lock returns.  Meanwhile, I will also 
suspend the generation of science data and possibly go into an engineering diagnostic 
mode if this has been a recurring problem."  This kind of sophisticated behavior is nearly 
impossible to implement using traditional approaches, but is straightforward using 
Remote Agent. 
A second feature of the Remote Agent that is invaluable during the system development, 
especially for testbeds, is the ability to modify sequences at runtime without rebooting. 
That is, a developer can work with a new sequence and fix bugs in it without having to 
reboot and recompile.  This is critical in the development of complex sequences, where it 
can often take many minutes or even hours to reach a particular state.  With RA's run-
time reprogrammability, a bug encountered once well into a sequence can often be 
repaired by the developer in realtime and operation can proceed without having to repeat 
the long process.  If some part of the process does have to be repeated, RA's automated 
recovery features help to restore the desired state as quickly as possible. 
In summary, before the Remote Agent was available, we frankly didn't know how we 
were going to solve many of the autonomy issues that are inherent to doing the complex 
work of interferometry.  RA has developed and demonstrated the technology needed to 
make autonomous interferometry viable, and is currently the baseline autonomy tool for 
the Keck Interferometer, the ST-3 interferometer, and the SIM instrument.  RA control of 
practical interferometer operations scenarios has been demonstrated on SIM testbeds, and 
the technology has not lost its luster through the rigors of practical use.  Within the realm 
of interferometry, Remote Agent is an essential and operational technology. 



 
JET PROPULSION LABORATORY   INTEROFFICE 
MEMORANDUM 
 
 
June 25, 1999 
 
 
To whom it may concern: 
 
I am writing on behalf of the JPL Mission Data System (MDS) project in support of 
Erann Gat’s research efforts on the object-oriented smart executive.  Although MDS is 
not making direct use of the Smart Executive, the research results from that project other 
Remote Agent development efforts have been invaluable in guiding the design of the 
MDS control architecture. 
The products of Erann’s research are well suited for adoption by MDS, both as a future 
enhancement and as a potential option for nearer term use — something which we will 
understand better as details of our primary plan unfold.  In particular, the Smart 
Executive offers a viable implementation for many problematic features that might 
otherwise constraint near term ambitions, such as those requiring dynamic code changes 
and dynamic memory management. 
Many aspects of MDS have been enabled because the Remote Agent and Smart 
Executive paved the way.  Our job will almost certainly be much more difficult if not 
impossible in the future without continued advanced research in these areas. 
 
 
 
 
       Robert D. Rasmussen 
       Chief Architect, Mission Data 
System 
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